

Exploring the role of vegetation height heterogeneity through LiDAR information for biodiversity estimation

Michele Torresani¹, Moudrý Vítězslav², Duccio Rocchini^{2,3}, Perrone Michela³, Tognetti Roberto¹

Free University of Bolzano/Bozen (Italy), Faculty of Agricultural, Environmental and Food Sciences, Bolzano, Italy
Department of Spatial Sciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Praha-Suchdol, Czech Republic
BIOME Lab, Department of Biological, Geological and Environmental Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy

Biodiversity assessment

VS

Biodiversity assessment: The Spectral Variation Hypothesis

Biodiversity assessment: The Spectral Variation Hypothesis

^j Department of Chemistry, Physics, Mathematics and Natural Sciences, University of Sassari, Via Vienna 2, Sassari 07100, Italy

* BIOME Lab, Department of Biological, Geological and Environmental Sciences, Alma Mater Studiorum University of Bologna, via Imerio 42, 40126 Bologna, Italy

Do not miss out!

The death of the Spectral Variation Hypothesis and the rise of its useful

'Zombies'

Christian Rossi^{1,2}, Michele Torresani³, Michela Perrone⁴, Leon Hauser¹ **Ecosystem Function and Functional Diversity**

Today 12:00pm-1:30pm · Location: Magellan meeting room

Two decades of Spectral Variation Hypothesis: advances and challenges in estimating biodiversity with remote sensing

Year

Michela Perrone¹, Christian Rossi², Duccio Rocchini^{1,3}, Leon T. Hauser⁴, Jean- Baptiste Féret⁵, Vítězslav Moudrý¹, Petra Šímová¹, Carlo Ricotta⁶, Giles M. Foody⁷, Patrick Kacic⁸, Hannes Feilhauer⁹, Marco Malavasi¹⁰, Roberto Tognetti¹¹, Michele Torresani¹¹

POSTER SESSION I

Today 6:30pm-8:00pm · Location: Big Tent

Biodiversity assessment: The Spectral Variation Hypothesis

Biodiversity assessment: The Spectral Height Variation Hypothesis

The Height Variation Hypothesis

Link between the Habitat Structural Heterogeneity and Biodiversity

Forest with high HH and high species diversity

Forest with low HH and low species diversity

The Height Variation Hypothesis in Forest Ecosystems: estimation of tree species diversity

Height variation hypothesis: A new approach for estimating forest species diversity with CHM LiDAR data

Michele Torresani ^a ^A, Duccio Rocchini ^b, ^c, Ruth Sonnenschein ^d, Marc Zebisch ^d, Heidi C. Hauffe ^e, Michael Heym ^f, Hans Pretzsch ^f, Giustino Tonon ^a

Assessment of Structural Heterogeneity

Received: 13 December 2020 Accepted: 8 February 2021

DOI: 10.1111/2041-210X.13583

APPLICATION

rasterdiv—An Information Theory tailored R package for measuring ecosystem heterogeneity from space: To the origin and back

Duccio Rocchini 1,2 Elisa Thouverai ¹ Matteo Marcantonio ³ Martina lannacito ⁴
Daniele Da Re ⁵ Michele Torresani ⁶ Giovanni Bacaro ⁷ Manuele Bazzichetto ⁸
Alessandra Bernardi ⁹ 💿 Giles M. Foody ¹⁰ 💿 Reinhard Furrer ^{11,12} 💿 David Kleijn ¹³ 💿
Stefano Larsen ^{14,15} 💿 Jonathan Lenoir ¹⁶ 💿 Marco Malavasi ² 💿 Elisa Marchetto ¹
Filippo Messori ¹ Alessandro Montaghi ¹⁷ Vítězslav Moudrý ² 💿 Babak Naimi ¹⁸ 💿
Carlo Ricotta ¹⁹ 💿 Micol Rossini ²⁰ 💿 Francesco Santi ¹ Maria J. Santos ²¹ 💿
Michael E. Schaepman ²² Fabian D. Schneider ²³ Leila Schuh ¹¹ Sonia Silvestri ¹
Petra Ŝímová ² 💿 Andrew K. Skidmore ^{24,25} 💿 Clara Tattoni ²⁶ 💿 Enrico Tordoni ⁷ 💿
Saverio Vicario ²⁷ Piero Zannini ¹ Martin Wegmann ²⁸

Community Ecology (2021) 22:1–11 https://doi.org/10.1007/s42974-021-00042-x

ORIGINAL ARTICLE

Measuring diversity from space: a global view of the free and open source rasterdiv R package under a coding perspective

Elisa Thouverai¹ · Matteo Marcantonio^{2,10} · Giovanni Bacaro³ · Daniele Da Re⁴ · Martina lannacito⁵ · Elisa Marchetto¹ · Carlo Ricotta⁶ · Clara Tattoni⁷ · Saverio Vicario⁸ · Duccio Rocchini^{1,9}

Received: 9 November 2020 / Accepted: 3 March 2021 / Published online: 8 April 2021 © The Author(s) 2021

The Height Variation Hypothesis in Forest Ecosystems: best LiDAR metric?

Moudrý, V., et al.(2023). Vegetation structure derived from airborne laser scanning to assess species distribution and habitat suitability: The way forward. *Diversity and Distributions, 29*(1), 39-50.

Article

Testing the Height Variation Hypothesis with the R *rasterdiv* **Package for Tree Species Diversity Estimation**

Daniel Tamburlin ^{1,*}, Michele Torresani ¹, Enrico Tomelleri ², Giustino Tonon ² and Duccio Rocchini ^{1,3}

Lang et al. 2022 *Global canopy height regression and uncertainty estimation from GEDI LIDAR waveforms with deep ensembles*

CHM 30 m

Potapov et al. 2021 Mapping global forest canopy height through integration of GEDI and Landsat data

LiDAR GEDI derived tree canopy height heterogeneity reveals patterns of biodiversity in forest ecosystems

Michele Torresani^{a,*}, Duccio Rocchini^{b,c}, Alessandro Alberti^a, Vítězslav Moudrý^c, Michael Heym^d, Elisa Thouverai^b, Patrick Kacic^e, Enrico Tomelleri^a

^a Pree University of Bolsano/Bosen, Faculty of Agricultural, Environmental and Food Sciences, Piazza Università/Univ

^e Department of Remote Sensing, Institute of Geography and Geology, University of Würzburg, Würzburg, Germany

Check for updates

DOI: 10.1002/ccs2.70026

ARTICLE

Emerging Technologies

Comparison of three global canopy height maps and their applicability to biodiversity modeling: Accuracy issues revealed

Vítězslav Moudrý^{1,2,3} | Lukáš Gábor¹ | Suzanne Marselis⁴ Petra Pracná¹ | Vojtěch Barták¹⁰ | Jiří Prošek^{1,3} | Barbora Navrátilová⁵ | Jan Novotný⁵ | Markéta Potůčková⁶⁰ | Kateřina Gdulová¹⁰ | Pablo Crespo-Peremarch⁷ | Jan Komárek¹⁰ | Marco Malavasi^{1,8}⁰ Duccio Rocchini^{1,9} | Luis A. Ruiz⁷ | Jesús Torralba⁷ Michele Torresani¹⁰ | Roberto Cazzolla Gatti⁹ | Jan Wild^{1,3}

The Height Variation Hypothesis at landscape level for assessment of bird biodiversity

Basic and Applied Ecology Volume 70, August 2023, Pages 38-49

RESEARCH PAPER

Habitat heterogeneity promotes bird diversity in agricultural landscapes: Insights from remote sensing data

<u>Matteo Anderle</u>^{a b c} Q ⊠, <u>Mattia Brambilla</u>^{c d}, <u>Andreas Hilpold</u>^a, <u>Joy Giovanni Matabishi</u>^{a e}, <u>Chiara Paniccia</u>^a, <u>Duccio Rocchini</u>^{f g}, <u>Jennifer Rossin</u>^{a f}, <u>Erich Tasser</u>^a, <u>Michele Torresani</u>^h, <u>Ulrike Tappeiner</u>^{a b}, <u>Julia Seeber</u>^{a b}

Show more 🧹

+ Add to Mendeley 🗠 Share , Cite

https://doi.org/10.1016/j.baae.2023.04.006 >

Under a Creative Commons license 🛪

Get rights and content > open access

Do not miss out!

Linking Bird Biodiversity and Structural Diversity in South Tyrol's Riparian Forests: Insights from Remote Sensing and Acoustic Data <u>Chiara Salvatori</u>^{1,2}, Irene Menegaldo², Michele Torresani², Enrico Tomelleri²

POSTER SESSION I

Tomorrow 6:30pm-8:00pm · Location: Big Tent

The Height Variation Hypothesis at grassland level for vegetation and bee diversity estimation

The Height Variation Hypothesis at grassland level for vegetation and bee diversity estimation

Grassland low height heterogeneity

The Height Variation Hypothesis at grassland level for vegetation and bee diversity estimation

Flower species richness

scientific reports

OPEN Grassland vertical height heterogeneity predicts flower and bee diversity: an UAV photogrammetric approach

Michele Torresani¹, Duccio Rocchini^{2,3⊠}, Giada Ceola², Jan Peter Reinier de Vries⁴, Hannes Feilhauer^{5,6,7}, Vitězslav Moudrý³, Harm Bartholomeus⁰, Michela Perrone³, Matteo Anderle^{9,10}, Hannes Andres Gamper¹, Ludovico Chieffallo², Enrico Guatelli¹¹, Roberto Cazzolla Gatti² & David Kleijn⁴

In conclusion

- Structural Heterogeneity assessed by RS data (LiDAR, photogrammetry) is linked to environmental heterogeneity and can be considered a good approach for the assessment of different aspects of biodiversity
- Interesting results **across various ecosystems** (forests, grasslands, and at landscape level), regarding the assessment of biodiversity **at different taxonomic levels** including vegetation, bees, and birds.
- The approach holds true with **different remote sensing data** (ALS LiDAR, Space-borne LiDAR, UAV photogrammetry)
- Limitations
- Next steps?

Italia - Svizzera | Italie - Suisse | Italien - Schweiz

MAP-Rezia

Thank you for your attention

Michele Torresani michele.torresani@unibz.it

The Height Variation Hypothesis

Assessment of Structural Heterogeneity

Rao's Q index $Q = \sum_{i=1}^{F-1} \sum_{j+i=1}^{F} d_{ij} * p_i * p_j$ p = relative abundance of a pixel value in a selected image (F) d_{ij} = spectral distance between the i-th and j-th pixel value (d_{ij} = d_{ji} and d_{ii} = 0) i = pixel i j = pixel j

<u>Home</u> > <u>Theoretical Ecology</u> > Article

On the mathematical properties of spatial Rao's Q to compute ecosystem heterogeneity

Research | <u>Open access</u> | Published: 11 July 2024 Volume 17, pages 247–254, (2024) Cite this article

You have full access to this open access article

Duccio Rocchini 🔄, Michele Torresani & Carlo Ricotta

Elisa Marchetto^a, Giovanni Bacaro^d, Roberto Cazzolla Gatti^a, Daniele Da Re^b, Michele Di Musciano^{a,e}, Reinhard Furrer^f, Marco Malavasi[§], Vítězslav Moudrý^h, Jakub Nowosadⁱ, Franco Pedrotti^j, Raffaele Pelorosso^k, Giovanna Pezzi^a, Petra Šímová[§], Carlo Ricotta¹, Sonia Silvestri^m, Enrico Tordoniⁿ, Michele Torresani^o, Giorgio Vacchiano^p, Piero Zannini^{a,q,r}, Duccio Rocchini^{a,g}

The Height Variation Hypothesis in Forest Ecosystems. Applications: assessment of forest stability during extreme events

The Height Variation Hypothesis in Forest Ecosystems: Applications (the VAIA windstorm)

The Height Variation Hypothesis in Forest Ecosystems: Applications (the VAIA windstorm)

The 2030 EU biodiversity strategy

EU's biodiversity strategy for 2030 is a comprehensive and ambitious plan.

The strategy aims to protect nature and reverse ecosystem degradation.

The goal is to achieve biodiversity recovery in Europe by 2030.

The 2030 Biodiversity Strategy

The strategy includes specific actions and commitments.

Cost of inaction

Economic and social costs of inaction

Biodiversity loss and ecosystem collapse is one of the biggest threats facing humanity in the next decade. **Economic and social costs of inaction** would be huge. The world already lost an estimated \in 3.5-18.5 trillion per year in ecosystem services from 1997 to 2011, and an estimated \in 5.5-10.5 trillion per year from land degradation. Biodiversity underpins EU and global food security. Biodiversity loss risks puts our food systems and nutrition at risk.

Biodiversity loss is intrinsically linked to and exacerbates climate change.