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Introduction and Objectives

Why predicting soil biodiversity?
To address critical threats such as:

• Land use change and intensification.

• Desertification

• Increased levels of pollution.

• Climate change.
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Introduction and Objectives

I. Comparative analysis of ML techniques 
and data configurations for soil trophic 
prediction.

II. Evaluate orthophoto features 
(embeddings).

III. Identify the environmental drivers.

Main goal of our study: To predict the abundance of 51 soil trophic groups in the French Alps

How to overcome them in this study?

Use eDNA metabarcoding 
to estimate soil trophic 

group abundances.

Integrate tabular data 
with remote sensing 

features.

Climate Soil

Phenology Landscape
Orthophoto

Challenges when building 
predictive models:

The largely unknown 
diversity of soil 

organisms.

The difficulty of 
integrating diverse 
data types for soil 

prediction.

Taxonomic and technical 
limitations in species 

identification.

Leverage pretrained Earth 
Observation Foundation models 
to extract belowground features.SatDINO

The lack of large and 
high-resolution 

environmental (soil) 
datasets.

Built efficient ML 
models for predicting 

soil trophic abundance.

Our specific objectives:
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Data Collection

Resulting dataset size: Aprox. 1000 samples
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Methodology: Levarage EOF Models

SatDINO Foundation Model by META AI Research:

Source: https://github.com/facebookresearch/HighResCanopyHeight
Paper: https://arxiv.org/abs/2304.07213 (Tolan et al.)

Why SatDINO?
 Model architecture: ViT.
 Training strategy: DINOv2 technique (self-supervised learning).
 Dataset: forests, mountainous terrains, and high degree of tree

biodiversity (high-resolution RGB images).
Overview of SatDINO approach for predicting canopy height.

Author: Tolan et al.

Dynamic One-For-All (DOFA) Foundation Model:

Source: https://huggingface.co/XShadow/DOFA
Paper: https://arxiv.org/abs/2403.15356 (Xiong et al.)

Why DOFA?
 Model architecture: ViT.
 Training strategy: Masked modeling, wavelength-conditioned

dynamic patch embedding, and multimodal distillation pretraining.
 Dataset: Setninel-1 (SAR), Sentinel-2 (multispectral), NAIP (RGB), 

EnMAP (hyperspectral).

DOFA’s architecture emulating the neuroplasticity mechanism for 
processing multimodal EO data. Author: Xiong et al.

Challenge: Lack of soil trophic data 
for building models from scratch 
(small dataset – aprox. 1000 samples) 

Proposed solution: Leverage 
pretrained EOF models to extract soil 
features (embeddings) 

EOF model Embeddings
vector

Orthophoto

https://github.com/facebookresearch/HighResCanopyHeight
https://arxiv.org/abs/2304.07213
https://huggingface.co/XShadow/DOFA
https://arxiv.org/abs/2403.15356
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Methodology: Overview

Can embeddings match or 
improve the performance of 

models based on in-situ 
tabular data?
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Results: Performance of ML models

ML techniques:

• LGBM and Random Forest showed the 
best performances.

• LGBM is the fastest in all data 
configurations.

Taxa:

• Bacteria, Fungi, and Protist show 
consistently higher Spearman’s Rho 
correlation.

• Oligochaete and Insect perform poorly.

Data configurations:

• C2 generates the best performance.
• C3 (embeddings) captures relevant 

information but not enough to 
overcome C1 or C2 or C4… WHY?

… …  …   …    …    …    …

Average execution time in sec: 
LGBM     -> C1 and C2 = 0.71,     C3 and C4 = 6.37
RF            -> C1 and C2 = 2.43,     C3 and C4 = 35.61
ATT-MLP -> C1 and C2 = 273.85, C3 and C4 = 354.83
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Results: Evaluating Embeddings

• SatDINO captures some level of 
differentiation based on land cover 
types.

• Grassland and Shrubs might have 
inherently similar visual features, 
making them harder to separate in 
the embedding space.

PCA projection and visualization of land cover clustering based on the SatDINO embeddings.
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Results: Evaluating Embeddings

Relationship between in-situ tabular data and PCA components of SatDINO embeddings.

The color gradients in the embeddings align with patterns in the tabular data components (redundancy!). 
This explains why adding embeddings (configuration 4) doesn’t improve performance.
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Results: Environmental Drivers

• Climate and soil are 
main contributors in 
most cases.

• Soil variables 
compensate the 
absence of 
embeddings in C2.

• Landscape 
contributions remain 
modest in most cases 
and phenology's 
relevance is highly 
group-specific.

C2 C4 
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Results: Environmental Drivers

• Climate and soil are 
main contributors in 
most cases.

• Soil variables 
compensate the 
absence of 
embeddings in C2.

• Landscape 
contributions 
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most cases and 
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group-specific.
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Conclusions

Conclusions:
• There are group-specific prediction challenges across

trophic groups.

• Tabular data outperforms embeddings.

• Embeddings capture partial information.

• Embeddings offer an alternative where in-situ data is 
scarce.

Future Work:
• Explore multimodal EOF models to integrate 

environmental data for soil biodiversity modeling.

• Model trophic networks to uncover species 
interdependencies.

• Investigate the feasibility of incorporating high-
resolution remote sensing data.

Three Recommendations for the conference organizers:

 Traditional tabular environmental data remains essential for 
robust biodiversity modeling.

 Integrating higher-resolution hyperspectral/multispectral remote 
sensing data could refine environmental characterizations for 
biodiversity assessment.

 A coordinated evaluation of different EOF models across multiple 
research teams would facilitate standardized comparisons.
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Thank you for your attention!

selene.cerna@univ-grenoble-alpes.fr
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