

Towards estimation of vegetation structure from orbit: a case study for tropical forest and Tandem-X

> Andreas Huth^{1,2,3}, Leonard Schulz¹, Kostas Papathanassiou⁴

 ¹Helmholtz Centre for Environmental Research, Leipzig, Germany
²University of Osnabrück, Germany
³iDivGerman Centre for Integrative Biodiversity Research, Leipzig
⁴ German Aerospace Center (DLR), Oberpfaffenhofen

Forests in the global carbon cycle

Currently vegetation is a carbon sink! 2 - 3 Gt C / yr (increase of carbon in atmosphere 4 Gt C/ yr, IPCC 2021, Pan 2024)

Climate change can modify productivity of vegetation:

- Europe 2003 drought: 30 % decrease of productivity, vegetation changed from C- sink into C-source: from 0.3 to -0.5 GtC (Cias et al. 2005, Nature)
- Amazon 2005/2010/2015 drought: forests transform from C-sink into C-source, from 0.4 to -1.2 GtC (Phillips et al. 2009, Science, Lewis et al. 2011, Nature, Qin et al. 2021, Nature CC)
- Higher mortality rates of trees: no global quantification (van Mantgem 2009 Science, Anderegg PNAS 2012)

Does vegetation act as a carbon sink also in future ?

HELMHOLTZ | CENTRE FOR ENVIRONMENTAL | RESEARCH – UFZ

FORMIND the forest model

forest inventorie Est.

Den

remote

sensing

50 years tradition of forest gap models exploring:

The Amazon rainforest

- forest dynamics and biomass
- forest structure and species compositions
- impact of disturbances

forest gap models : Shugart 1998, CUP Shugart et al. 2018, ERL review Formind: Fischer et al. 2016, Ecol Mod

Biomass in the Amazon rainforest

Linking forest modelling and Lidar profiles (GEDI)

260

220 180

140 100

60

20

RESEARCH – UFZ

- we filter the forest states that match the • measured profile from satellite (GEDI)
- from this we derive estimates for the • forest state
- here: biomass map using 110 million shots • GEDI Lidar for 2021

Bauer et al. 2021, Rem. Sensing, Roedig et al. 2019, Nat Comm, Knapp et al. 2017, Rem Sens Env

Forest productivity maps for the Amazon using Lidar profiles and forest modelling

- **unique features:** analysis can be done also for other forest attributes: stem number, basal area, productivity (GPP, NPP), carbon uptake (NEE), mortality...
- mean GPP for Amazon forests : 22 tC / (ha yr).
- according to this approach the Amazon is still a carbon sink (0.5 GtC /yr NEE).

Bauer et al. 2024, Rem Sens, Hiltner et al. 2022, BGC Bauer et al. 2021, Rem Sens, Roedig et al. 2019, Nat Com Roedig et al. 2018, ERL

Radar simulator for forest models

We developed a Radar simulator for our forest model. First applications are done for Panama and French Guyana.

Analysing forest structure using interoferrometric Radar (here Tandem-X)

Forest height (from Lidar)

Case study:

Barro Colorado Island, Panama, tropical forest 50 ha (1000 m x 500 m), 20000 trees, 250 trees species

Coherence amplitude (from Radar)

We develop new methods to for estimate forest height and forest structure with Radar combined forest modelling.

Summary

- We applied a forest gap model (FORMIND) to the Amazon (every tree in the Amazon is simulated, in total 410 bill. trees) www.formind.org
- We developed a novel framework to integrate remote sensing products into forest modelling
 - remote sensing data is used a filter (selection of states from forest succession simulations)
 - the filtered states can be used to derive important forest attributes (e.g. biomass, basal area, GPP, NEP, mortality) at high spatial resolution (e.g. 1 ha or 1 km²)
- this has several advantages:
 - (a) remote sensing of forest structure (e.g. Lidar) allows us to consider also disturbed forest states
 - (b) validation experiments are possible without 'mixing' spatial scales
 - (c) integration of different remote sensing products is possible: Lidar, Radar and opitical (e.g. Gedi, Tandem-X, Biomass)

Many thanks!

Tandem-X

(Radar X- Band, interferometric measurements, vegetation structure)

Linking forest modelling and remote sensing: forest fragmentation in the Amazon

(GEDI, 110 million profiles, Tandem-X forest/ non-forest map, forest model FORMIND, Amazon version)

In forest edges forest biomass is often lower (due to change in forest structure), forest productivity NPP is often higher.