

BioSpace25 - Biodiversity insight from Space 10 - 14 February 2025 | ESA-ESRIN | Frascati - Italy

Phytoplankton assemblage structure off southwestern Iberia: Combining complementary approaches to assess variability and underlying drivers/predictors

Maria João Lima, Ana B. Barbosa mjlima@ualg.pt

ESA UNCLASSIFIED - For ESA Official Use Only

Why study phytoplankton off SW Iberia?

- Key primary producers, regulators of ecosystem functioning and services, and relevant indicators of environmental status
- Different species-specific functional traits and niche preferences lead to variable responses to environmental forcing
- Region characterized by high levels of mesoscale variability and vulnerability to climate change (Soares et al., 2023)

What are the current challenges?

Study objectives

1. Assess spatial-temporal variability patterns of phytoplankton assemblages off SW lberia

2. Identify underlying environmental drivers and predictors

3. Evaluate the performance of satellite algorithms used to derive phytoplankton composition at a regional scale

Methods: field sampling

Regular sampling

- 3 stations (F1, F2 and F3)
- Coastal-offshore transect
- July 2012 July 2014 (10 sampling dates)
- 3 depth levels: surface, 0.3*Secchi depth, 0.6*Secchi depth
- Sampling time synchronous with MODISA passage (±3h)

MarBIS oceanographic cruise

- 12 stations (black squares)
- Alongshore transect
- 20 June 11 July 2013
- 3 depth levels

Satellite algorithm validation

Methods: variables, data sources and analysis

🔲 In situ

Remote sensing

Models

Physico-chemical: T, S, SDD, PAR, DO, NH_4^+ , NO_3^- , NO_2^- , PO_4^{3-} , SiO_4^{4-} , SPM

Phytoplankton-related variables:

Chl-a concentration, specific photosynthetic diagnostic pigments, abundance, biomass, community size structure and species composition SST, PAR, Kd490, wind components and magnitude, Chl-a

NH₄⁺, NO₃⁻, PO₄³⁻, SiO₄⁴⁻, MLD, geostrophic velocity

Multivariate analysis (NMDS, PERMANOVA, CCA)

Methods: phytoplankton assemblage composition

- Contribution of size classes and functional types estimated from:
 - Abundance and biomass (epifluorescence and inverted microscopy)
 - Specific diagnostic pigment analysis (Hirata et al., 2011; Brewin et al., 2015 with weights tuned to the North Atlantic)
 - CHEMical TAXonomy analysis (CHEMTAX; Hayward et al., 2023)
- Comparison with satellite-based algorithms (3x3 matchup grid box; Xi et al., 2021), including the re-tuned three-component model by Brewin *et al.* (2010) with SST (Brewin et al., 2017), using type II linear regression

Methods: RS-derived phytoplankton composition

Daily data, 2012-2014

PFTs	North Atlantic Ocean Colour Plankton, $\ll chr III \ge$ Reflectance, Transparency and Optics MY L3 daily observations	OCEANCOLOUR_ATL_BGC_L3_ MY_009_113 (L3, 1x1 km)	
PSCs &	Global Ocean Colour (Copernicus- GlobColour), Bio-Geo-Chemical, L3 (daily) from Satellite Observations (1997-ongoing) Here → Marke Data Store → Protect	OCEANCOLOUR_GLO_BGC_L3_ MY_009_103 (L3, 4x4 km)	Processing frameworks and providers Spatial extent and resolution Available variables
PSCs	Global Ocean Colour Plankton and strain the strain of the strain the strain of the strain the strai	OCEANCOLOUR_GLO_BGC_L3_ MY_009_107 (L3, 4x4 km)	

Phytoplankton assemblage structure and pigment signatures

Chl: Chlorophyll, Dvchla: divinyl chlorophyll a; X19but: 19'-but-fucoxanthin; Allo: Alloxanthin; Prasino: Prasinoxanthin; Per: Peridinin; Zea: Zeaxanthin; X19hex: 19'-hex-fucoxanthin; Fuco: Fucoxanthin

Phytoplankton assemblage structure from pigment signatures

Group	r-coef	p-value	MAE	MSE	RMSE
Synechococcus	0.80	4.41E-07	0.18	0.05	0.22
Cryptophyceae	0.83	3.88E-07	0.12	0.02	0.14
Diatoms	0.74	7.73E-08	0.37	0.23	0.47
Dinoflagellates	0.56	2.03E-04	0.40	0.28	0.53

N = 25 - 39

CHEMTAX

Assemblage structure: variability and environmental predictors

 $\bigcirc \quad \text{Autumn} \qquad \Box \quad \text{Spring} \\ \triangle \quad \text{Winter} \qquad \diamondsuit \quad \text{Summer}$

Performance of RS-derived algorithms

Phytoplankton group		Performance metrics*		
(in situ pigments)	Satellite product	Bias	MAE	Overall Wins (%)
	OCEANCOLOUR_ATL_BGC_L3_MY_009_113	1.29	1.67	27.27
Pico	OCEANCOLOUR_GLO_BGC_L3_MY_009_103	1.20	1.50	54.55
	OCEANCOLOUR_GLO_BGC_L3_MY_009_107	1.11	1.73	18.18
	Abundance-based model with SST	1.24	1.68	0
	OCEANCOLOUR ATL BGC L3 MY 009 113	0.66	1.84	18.18
Nono	OCEANCOLOUR_GLO_BGC_L3_MY_009_103	0.61	1.87	18.18
Nano	OCEANCOLOUR_GLO_BGC_L3_MY_009_107	1.49	1.80	27.27
	Abundance-based_model_with_SST	1.39	1.75	36.36
	OCEANCOLOUR_ATL_BGC_L3_MY_009_113	0.60	1.67	36.36
Micro	OCEANCOLOUR_GLO_BGC_L3_MY_009_103	0.57	1.88	9.09
MICIO	OCEANCOLOUR_GLO_BGC_L3_MY_009_107	0.71	1.74	18.18
	Abundance-based_model_with_SST	0.70	1.77	36.36
	OCEANCOLOUR_ATL_BGC_L3_MY_009_113	1.80	1.90	33.33
Prokaryotes	OCEANCOLOUR_GLO_BGC_L3_MY_009_103	1.68	1.79	66.67
	Abundance-based_model_with_SST	-	-	-
	OCEANCOLOUR_ATL_BGC_L3_MY_009_113	0.35	2.88	9.09
Diatoms	OCEANCOLOUR_GLO_BGC_L3_MY_009_103	0.34	2.98	18.18
	Abundance-based_model_with_SST	0.63	1.91	72.73
	OCEANCOLOUR_ATL_BGC_L3_MY_009_113	5.99	5.99	8.33
Dinoflagellates	OCEANCOLOUR_GLO_BGC_L3_MY_009_103	5.16	5.16	5.88
-		1.91	2.75	93.75

Number of valid matchups = 12 - 27. The best statistical results are highlighted in **bold**.

*Selected according to Seegers et al. (2018).

Conclusions

- Diatoms and dinoflagellates dominated at coastal stations, while cyanobacteria surpassed dinoflagellates further offshore
- Winter-spring: diatom dominance; summerautumn: cyanobacteria and dinoflagellate dominance
- UI, NO₂ and SPM were the best predictors of variability in the structure of the phytoplankton assemblage
- RS-based algorithms need further refinement and validation to be applied at regional scales

Next steps

- Estimate NO₃⁻ concentrations in the study area from *in situ*/satellite-retrieved water temperature, SiO₄⁴⁻, and/or Chl-a concentrations using empirical regressions
- Apply multivariate analysis with model-derived NO₃⁻ concentrations
- Explore specific bloom events

Recommendations for conference organizers:

- Provide travel funding/scholarships for participants from developing countries
- Implement real-time feedback mechanisms (e.g., post-session surveys)
- Promote Q&A sessions/round tables after each session

BioSpace25 - Biodiversity insight from Space 10 - 14 February 2025 | ESA-ESRIN | Frascati - Italy

Thank you! Would you like to see the reference list?

Do you have any questions?

mjlima@ualg.pt

ESA UNCLASSIFIED - For ESA Official Use Only

→ THE EUROPEAN SPACE AGENCY

References

- Brewin, R.J.W.; Ciavatta, S.; Sathyendranath, S.; Jackson, T.; Tilstone, G.; Curran, K.; Airs, R.L.; Cummings, D.; Brotas, V.; Organelli, E.; et al. Uncertainty in Ocean-Color Estimates of Chlorophyll for Phytoplankton Groups. *Front. Mar. Sci.* 2017, *4*, doi:10.3389/fmars.2017.00104.
- Brewin, R.J.W.; Sathyendranath, S.; Hirata, T.; Lavender, S.J.; Barciela, R.M.; Hardman-Mountford, N.J. A three-component model of phytoplankton size class for the Atlantic Ocean. *Ecol. Modell.* 2010, 221, 1472–1483, doi:10.1016/j.ecolmodel.2010.02.014.
- Brewin, R.J.W.; Sathyendranath, S.; Jackson, T.; Barlow, R.; Brotas, V.; Airs, R.; Lamont, T. Influence of Light in the Mixed-Layer on the Parameters of a Three-Component Model of Phytoplankton Size Class. *Remote Sens. Environ.* 2015, 168, 437–450, doi:10.1016/j.rse.2015.07.004.
- Global Ocean Colour (Copernicus-GlobColour), Bio-Geo-Chemical, L3 (daily) from Satellite Observations (1997-ongoing).
 E.U. Copernicus Marine Service Information (CMEMS). Marine Data Store (MDS). doi: 10.48670/moi-00280 (accessed on 21-06-2024).
- Global Ocean Colour Plankton and Reflectances MY L3 daily observations. *E.U. Copernicus Marine Service Information (CMEMS). Marine Data Store (MDS).* doi: 10.48670/moi-00282 (accessed on 25-06-2024).

References

- Hayward, A.; Pinkerton, M.H.; Gutierrez-Rodriguez, A. *phytoclass*: A Pigment-Based Chemotaxonomic Method to Determine the Biomass of Phytoplankton Classes. *Limnol. Oceanogr. Methods* **2023**, *21*, 220–241, doi:10.1002/lom3.10541.
- Hirata, T., Hardman-Mountford, N.J., Brewin, R.J.W., Aiken, J., Barlow, R., Suzuki, K., Isada, T., Howell, E., Hashioka, T., Noguchi-Aita, M., and Yamanaka, Y. Synoptic relationships between surface Chlorophyll-a and diagnostic pigments specific to phytoplankton functional types, *Biogeosciences* 2011, *8*, 311–327, doi:10.5194/bg-8-311-2011.
- North Atlantic Ocean Colour Plankton, Reflectance, Transparency and Optics MY L3 daily observations. *E.U. Copernicus Marine Service Information (CMEMS). Marine Data Store (MDS)*. doi: 10.48670/moi-00286 (accessed on 21-06-2024).
- Seegers, B.N.; Stumpf, R.P.; Schaeffer, B.A.; Loftin, K.A.; Werdell, P.J. Performance Metrics for the Assessment of Satellite Data Products: An Ocean Color Case Study. *Opt. Express* **2018**, *26*, 7404, doi:10.1364/oe.26.007404.
- Soares, P.M.M.; Careto, J.A.M.; Russo, A.; Lima, D.C.A. The Future of Iberian Droughts: A Deeper Analysis Based on Multi-Scenario and a Multi-Model Ensemble Approach. *Nat. Hazards* **2023**, *117*, 2001–2028, doi:10.1007/s11069-023-05938-7.
- Xi, H.; Losa, S.N.; Mangin, A.; Garnesson, P.; Bretagnon, M.; Demaria, J.; Soppa, M.A.; Hembise Fanton d'Andon, O.; Bracher, A. Global Chlorophyll a Concentrations of Phytoplankton Functional Types With Detailed Uncertainty Assessment Using Multisensor Ocean Color and Sea Surface Temperature Satellite Products. *J. Geophys. Res. Ocean.* 2021, 126, 1–26, doi:10.1029/2020JC017127.