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High demand for data products showing state of
biodiversity in relation to anthropogenic pressures

Jakob Nystrém
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Global biodiversity model for policy support

Example: Bll intactness heatmap
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Biodiversity intactness: Estimated diversity of a site
relative to primary vegetation reference site

Site A: Cropland
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Site C: Primary vegetation
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Data from multiple studies Relative abundance: 0.55

Sites sometimes organized in blocks Compositionatsinitarity: 047
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How well can such models predict on unseen data?

? How well do current models

A .Key gap: I\/Ic.)de.l—based generalize to unseen data?
intactness indicators not

tested for predictive
performance ’) Are there approaches that

are spatially more granular,
and generalize better?
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Testing shows limited generalization capabilities
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Why lack of generalization? How can we improve it?

Limitations of the BIl model Potential improvements explored

* Linear mixed model with study-block *  New model family: Bayesian hierarchical
random effects > explanatory model models

* Does not work well as predictive model * New hierarchy: Biogeographic (biomes,

* Random effects can’t be used on test realms)

data

)  New predictors: Bioclimatic, topographic
» Fixed effects averaged across all data

Population level fixed effects Population level hyperparameters
Study random slopes / intercepts Biome varying slopes / intercepts
Spatial block random intercepts Realm varying slopes / intercepts
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Cross-validation approaches:

Goal of cross-validation

* Simulate model accuracy on
new, unseen sites

* Approximate ground-truthing
via new data collection

Challenges
* Data from multiple studies

» Studies range from 2-754
sites; vary greatly in scope
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No size that fits all

Standard CV: Interpolation in well-sampled areas

Cross-study CV: Generalization of model learnings
across data sources

Environmental CV: Extrapolation to new biotic
and abiotic conditions

Spatial CV: Extrapolation to new areas




Standard CV would suggest decent accuracy, but other
approaches pinpoint fundamental limitations

Model benchmark across different test sets
Metric: Pearson correlation coefficient
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Note: Stratified sampling is used, with a minimum of 10 studies in each biogeographical stratum. Standard CV (site and study splits) uses stratification at the
biome-realm level. Spatial and environmental CV adds ecoregion, since clustering can otherwise produce too distant clusters.
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Check out
our group

Future work and recommendations LR

Q Future work

* Question: Given data limitations, can we build “good enough” predictive models?
* Testing: CV methods for heterogeneous, imbalanced, multi-study data

« Data: More biodiversity data (GBIF, ...), better (continuous) land cover data
* Model: Combining top-down and bottom-up approaches?

=Y| Recommendations
« Support massive, standardized biodiversity data collection using scalable
methods, e.g. eDNA

* Develop time series of higher-resolution land cover and habitat condition maps,
going back in time
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