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Obijective
o000

® Develop a Bayesian regression algorithm for predicting
traits using spectra.

Our proposed Bayesian approach enables:

v' working on the original spectral scale

v" full uncertainty quantification

v’ use of prior knowledge.
v modeling non-linearities

v’ Developing instrument-aware trait algorithms

DID THE SUN JUST EXPLODE?

(IS NIGHT, S0 WERE NOT SURE.)

THIS NEUTRINO DETECTOR MERASURES
WHETHER THE SUN HAS GONE NOVA.

( THEN, TROLLS TWO DICE. F THEY

BOTH COME UP SiX, IT UES TO US,

OTHERWISE, M TELLS THE TRUF.
LETS TRY.
CETECTOR! HAS THE
SUN GOVE NOA?

' o zo

N

FREQUENTIST STATISTICIAN: BAYEBIAN STATISTIOAN:

THE PROBABIITY OF TFIS RESULT

HAFPENING BY CHANCE 15 =027 BET YOU $50
SNCE p<0.05 T. CONCLUDE IT HANT.
THAT THE SUN HAS EXPLODED. )

Taal
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® Develop a Bayesian regression algorithm for predicting
traits using spectra.

Our proposed Bayesian approach enables:

v' working on the original spectral scale

v" full uncertainty quantification

v’ use of prior knowledge.
v modeling non-linearities

v’ Developing instrument-aware trait algorithms

v’ Intuitive, flexible and FUN !l
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Bayesian Approach
o000
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Deriving reduced Bayesian model

® Simulations from the trained full model are used to select a reduced model preventing

overfl’r’rlng to observations. Number of wavelengths in the reduced model
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Posterior predictions and relevant spectra
Leaf scale — ECOSIS (~ 2000 bands)

EcoSIS: Ecosystam Spectral 00000
Information System
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Observation

Spectra Importance Rank

Posterior predictions and relevant spectra
Airborne scale — AVIRIS-NG (~ 400 bands)
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Extensions to the Bayesian Approach
eoeoo0o



Extensions to the Bayesian Approach
eoeoo0o

® Weighted Bayesian regression based on under-sampled plant forms
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Extensions to the Bayesian Approach
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® Weighted Bayesian regression based on under-sampled plant forms in training data.

Hierarchical Modeling to model group-specific variations (such as at broadleaf, needle
leaf, etc.)



Extensions to the Bayesian Approach
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® Weighted Bayesian regression based on under-sampled plant forms in training data.

©® Hierarchical Modeling to model group-specific variations (such as at broadleaf, needle

leaf, etc.)
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Extensions to the Bayesian Approach
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® Weighted Bayesian regression based on under-sampled plant forms in training data.

Hierarchical Modeling to model group-specific variations (such as at broadleaf, needle
leaf, etc.)

® Non-linear effects of spectra on traits using kernels.



Extensions to the Bayesian Approach
0000
® Weighted Bayesian regression based on under-sampled plant forms in training data.

Hierarchical Modeling to model group-specific variations (such as at broadleaf, needle
leaf, etc.)
® Non-linear effects of spectra on traits using kernels.
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Extensions to the Bayesian Approach
eoeoo0o

® Weighted Bayesian regression based on under-sampled plant forms in training data.

©® Hierarchical Modeling to model group-specific variations (such as at broadleaf, needle

leaf, etc.)

® Non-linear effects of spectra on traits using kernels.

® Developing instrument-aware trait algorithms, which harmonize trait predictions
from one sensor (eg EMIT, SBG) to another (e.g., ENMAP, CHIME) without resampling

spectra.

Posterior distribution

Fit Bayesian model for Simulations from of regression
algorithm trained on ‘
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coefficients for

a trait using spectra
Sensor 2

from Sensor 1

Project distribution of
Sensor 1 regression
coefficients to new
Sensor 2
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Suggestions
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® Global Open access database with paired data of traits
and remote sensing spectra.

Coordination of joint field campaigns to have coincident
remote sensing spectra from more than one remote sensing

instrument. SBGPLANTS

Leads: Yoseline Angel (NASA Goddard)
Dana Chadwick (NASA JPL)

SQL-based architecture
ré'r

% @®

Extracted Plots Leaf
spectra observations

End User

SBG PLANTS will integrate field and
airborne data along with metadata and
connect users interactively with tools to
facilitate the modelling of transferable
and sensor-agnostic algorithms. These
algorithms are designed to retrieve the
SBG VSWIR terrestrial ecosystem
demonstration  products, such as
chlorophyll, nitrogen, and leaf water
content.
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