

BioSpace25 - Biodiversity insight from Space 10 - 14 February 2025 | ESA-ESRIN | Frascati - Italy

N Nantes

Université

Impact of Marine and Atmospheric Heatwaves on Intertidal Seagrass: Experimental Spectroradiometry and Satellite-Based Insights

BIO-LITTORAL

Simon Oiry, Bede Ffinian Rowe Davies, Phillipe Rosa, Augustin Debly, Maria Laura Zoffoli, Anne-Laure Barillé, Nicolas Harin, Pierre Gernez, Laurent Barillé ESA UNCLASSIFIED - For ESA Official Use Only

→ THE EUROPEAN SPACE

Introduction

-+- 🛛 🖉 🔚 🔚 🔚 🔚 🔚 🔚 🔤 🚱 🍉 🚺 💥 🚼 🛨 📰 📾 🕮 🏜 🙌 --- > THE EUROPEAN SPACE AGENCY

€€) B€N

Luropean Commission CEÉS

•eesa

Introduction

💻 🔜 📕 🚛 💶 🕂 📲 🔚 🔚 🔚 🔚 🔚 🚍 📲 🚍 🛶 🔯 🍉 📲 💥 📇 🛃 📟 💩 🖕 🛊 🔸 🗰

€€) B€N

European Commission CEÉS

esa

Introduction What's in the litterature ?

scientific reports

OPEN Physiological and morphological effects of a marine heatwave on the seagrass *Cymodocea nodosa*

Vol. 435: 83–95, 2011 doi: 10.3354/meps09213 Mar Ecol Prog Ser	Published August 22
--	---------------------

Effects of a simulated heat wave on photophysiology and gene expression of high- and low-latitude populations of *Zostera marina*

Gidon Winters^{1,*}, Peter Nelle¹, Birgit Fricke¹, Gisep Rauch¹, Thorsten B. H. Reusch^{1,2}

Heat wave intensity can vary the cumulative effects of multiple environmental stressors on *Posidonia oceanica* seedlings

LIMNOLOGY and OCEANOGRAPHY Landstein Commercial C

Chronically elevated sea surface temperatures revealed high susceptibility of the eelgrass *Zostera marina* to winter and spring warming

Yvonne Sawall ⁰, ^{1,2*} Maysa Ito ⁰, ^{1,3} Christian Pansch ^{0,1,4} ¹Department of Marine Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Gernnany ¹Bernuda Institute of Ocean Sciences (BIOS), SL George's ¹ffemenc, Channel and North Sea Fisheries Research Unit, Roulogne-sus-mer, Prance ¹Environmental and Marine Biology, Abo Kadaedmu University, Abo, Finland

On subtidal Zostera marina and Cymodosea nodosa:

European

• Highly vulnerable to elevated sea temperatures in winter and spring, leading to early flowering, high mortality, and reduced biomass.

€€) B®N

CE

·eesa

- Photosynthetic activity rises during HWs but diminishes during recovery, impairing performance and reducing leaf biomass.
- Responses vary greatly between species...
- ...and within a single species across latitudes.

What about Zostera noltei?

Impact on the reflectance ?

Impact of Extreme Atmospheric temperature?

Heatwaves alter the spectral reflectance of *Zostera noltei* seagrass. This change can be detected using remote sensing technique.

•Evaluate the direct impact of heatwave-induced **thermal stress** on the reflectance of *Zostera noltei* through **controlled experiments**.

€€) B€N

European

CE

· e esa

•Develop a **spectral index** for detecting stress-induced changes in seagrass coloration.

•To apply findings from experimental reflectance changes to **satellitebased** remote sensing, assessing the spatial extent and temporal dynamics of an heatwave event that occurs in September 2021, in Quiberon, on seagrass meadows.

Material & Methods Experiment

Intertidal chambers

Allow to control :

European Complission

- Air Temperature
- Water Temperature

€€D B@N

- Tide cycle
- Photoperiod and light intensity

Measurement of hyperspectral signature of samples

CE

eesa

💻 🔜 📲 🚍 🔤 🛶 📲 🔚 🔚 🔚 🔚 🔚 🔚 🔚 🔤 🛻 🚱 🛌 📲 🚼 🖬 📾 🖓 🐂 👘

Material & Methods Experiment

€€) B€N

European Commission CESS

· e e sa

Material & Methods Sentinel-2 satellite mapping

European

€€) B€N

• Spectral shape

•

•
$$NDVI = \frac{R(NIR) - R(Red)}{R(NIR) + R(Red)}$$

 $GLI = \frac{2 * R(Green) - R(Red) - R(Blue)}{2 * R(Green) + R(Red) + R(Blue)}$

CE

eesa

Results Experiment – Spectral signatures

10

€€) B€N

Luropean Commission CESS

eesa

Results Experiment – SHSI

Results Experiment – Evolution of Indices

€€) B€N

Luropean Commission CESS

eesa

Results Satellite – Spectral signatures

→ THE EUROPEAN SPACE AGENCY

Results Satellite – SHSI

€€) B€N

European Commission CEÉS

esa

💳 📰 🖬 📰 💳 🕂 📲 🔚 📰 📰 📲 🔚 📰 🛻 🚳 🖿 📲 🖬 🖬 🖬 🗰 🖓 📩

Results Satellite – Emersion Time

€€) B€N

Luropean Commission

CESS

esa

Discussion & Conclusion Mapping Impacted meadows

- Seagrasses impacted by heatwave have a distinct spectral signature (drops at 560 and 740nm)
- Possible to detect seagrass thermal stress using satellite remote sensing, using the SHSI
 - Designed to be used by most space missions (Sentinel-2, Pleiades-Neo, WorldView-3, SkySat, GeoSat-2...)...

€€) B€N

 $\langle \rangle$

CESS

•eesa

• ... but also by future missions (Sentinel-2 Next Generation, Landsat Next...)

🗧 🔚 📲 🚃 🖛 🕂 📲 🧮 📰 📲 🔚 🔚 🚍 💏 🧱 🚱 🌬 📲 🚼 🖬 📾 🖬 👘 👘 👘 👘

Discussion & Conclusion Heatwaves in a Global Warming Context

• Rapid **global** escalation of HW frequency, intensity and duration (Devi et al., 2024; Russo and Domeisen, 2023)...

€€) B@N

European

CESS

•eesa

Thank you !

Nantes
 Oiry Simon, Bede Davies, Philippe Rosa,
 Université
 Augustin Debly, Pierre Gernez, Laurent Barillé

European

€€) B€N

CESS

· e e sa

BIO-LITTORAL Anne-Laure Barillé, Nicolas Harin

💻 🔜 📲 🚍 💳 🕂 📲 🔚 🔚 🔚 🔚 🔚 🔚 🔚 🔤 🛻 🚳 🛌 📲 🚼 🖬 📾 🖓