







BioSpace25 - Biodiversity insight from Space 10 - 14 February 2025 | ESA-ESRIN | Frascati - Italy

## **MAPPING MORE BIODIVERSITY**

INTEGRATING SPATIAL AND PHYLOGENETIC INFORMATION TO IMPROVE DATA-DEFICIENT SPECIES

SHUBHI SHARMA, JEREMY COHEN & WALTER JETZ

ESA UNCLASSIFIED - For ESA Official Use Only



<u>SDMs can improve our understanding</u> <u>of biodiversity distribution</u>

Species distribution models (SDMs) outputs are often used to

- pinpoint biodiversity hotspots
- develop effective conservation plans





Ellis-Soto et al., (2021)

### <u>Data-deficiency impedes our understanding of</u> <u>biodiversity distribution</u>





## We need better models for data-deficient species

Most tropical places in the world have incomplete richness datasets

### <u>Data-deficiency impedes our understanding of</u> <u>biodiversity distribution</u>



75,000

No. of species

25,000-

10

We need better models for data-deficient species

Plants and insects are among the most datapoor taxa

Sharma et al., In Revision, TREE

Legend

Most coverag

1,000 No. of occurrence records 10,000

### <u>Data-deficiency impedes our understanding of</u> <u>biodiversity distribution</u>



75,000 Insects 30 records Data-Plants deficient Vertebrate No. of species 25,000-0 10,000 10 1,000 No. of occurrence records

We need better models for data-deficient species

Plants and insects are among the most datapoor taxa

Legend

Sharma et al., In Revision, TREE

### What about data poor species?

Our current models cannot handle species that have little to no geographic/occurrence data

Shining sunbeam (Agalaectis cupripennis)









To improve this prediction, we need  $\rightarrow$ 







#### Shining sunbeam (Agalaectis cupripennis)



#### 3. Model

#### **Latent Gaussian Process**

### Open Access

A JOURNAL OF SPACE AND TIME IN ECOLOGY

© 🛈 Forum 🔂 Open Access

probability

0.3

0

Measuring the evolution of *n*-dimensional environmental niches

Shubhi Sharma 🔀, Kevin Winner, Jussi Mäkinen, Walter Jetz

First published: 19 November 2024 | https://doi.org/10.1111/ecog.07285

**Yale Links** 

**SECTIONS** 

TOOLS < SHARE

#### Abstract

The study of species' environmental niches underpins numerous questions in ecology and evolution and has increasing relevance in a rapidly changing world. Environmental niches, characterized by observations of organisms, inform about a species' specialization in multivariate environment space and help assess their exposure and sensitivity to changing conditions. Environmental niches are also the central concept

Sharma et al., (2024), Ecography



# PHYLO MODEL compared to

### <u>NON PHYLO</u> GAUSSIAN PROCESS



# PHYLO MODEL compared to

### <u>NON PHYLO</u> GAUSSIAN PROCESS



# PHYLO MODEL compared to

### <u>NON PHYLO</u> GAUSSIAN PROCESS



# PHYLO MODEL compared to

### <u>NON PHYLO</u> GAUSSIAN PROCESS



# PHYLO MODEL compared to

### <u>NON PHYLO</u> GAUSSIAN PROCESS

### **RANDOM FOREST**

The phylogenetic model improves distribution estimates most for datadeficient species!



# PHYLO MODEL compared to

### <u>NON PHYLO</u> GAUSSIAN PROCESS

### **RANDOM FOREST**

The phylogenetic model improves distribution estimates most for datadeficient species!

















**OLYHYLON** 







The phylogenetic model is able to model more species than the non-phylo models Including data-poor species in our assessments will change our understanding of biodiversity distribution

and consequently, <sup>(7)</sup> our conservation strategy



#### <u>Recommendations $\rightarrow$ </u>

1. Focus on **improving spatial models for data-deficient** species as conservation prioritization analyses depend on accurate maps of biodiversity distribution

2. Uncertainties associated with species' distribution, particularly datadeficient species distributions must be taken into account

3. Remote-sensing derived habitat variables for all taxonomic groups **improve niche characterization**, which SDMs rely on









BioSpace25 - Biodiversity insight from Space 10 - 14 February 2025 | ESA-ESRIN | Frascati - Italy

## THANK YOUL

ESA UNCLASSIFIED - For ESA Official Use Only

→ THE EUROPEAN SPACE AGENCY

30