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From presence-only to abundance species
distribution models using transfer learning
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Why focus on species distribution models using artificial neural networks?
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Current limitations: abundance data sets too small for neural networks
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Overcoming limitations with transfer learning technology

Large abundance dataset
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Fish occurrence and fish abundance datasets
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Environmental dataset and benchmark

Species distribution models using Species distribution models using
artificial neural networks Random Forest

(for benchmark)

Value of the central pixel of the 30 bands

Standard deviation of the 30 bands

15 rasters :
- 14 environmental covariates 30 bands
- one satellite image
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Evaluation Metric

i|log(y, + 1) — log(; + 1)
?zl‘log(yi — 1) — log(y + 1)‘

D2log =1

where n = number of abundance of species, y; = true abundance of species / of a given species in a given site,
y; = predicted abundance of species i of a given species in a given site, y = median of true abundance of species

D2log =0 =3 the model explains nothing

D2log =1 = the model predicts the data perfectly
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Model performances on fish abundance prediction
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Figure : Violin plots showing the model performances on the fish abundance test set over 20 folds for D2 log. Std = Standard deviation. 7/9
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Model performances on fish abundance prediction
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Figure: D2Log deviation by
species between the neural
network model with transfer
learning and classic model
calculated for each of the 20
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Conclusion and future work

Species distribution models using neural networks are able to:

- extract relevant information for predicting species abundance from large presence-only

- re-use this information to outperform classic models for predicting species abundance

- better abundance prediction of species poorly represented in datasets than classic models
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Conclusion and future work

Species distribution models using neural networks are able to:

- extract relevant information for predicting species abundance from large presence-only

- re-use this information to outperform classic models for predicting species abundance

- better abundance prediction of species poorly represented in datasets than classic models

Question for future work: what is the nature of the information extracted from the species
data alone by the neural networks used to optimise predictions of abundance?

Important patterns ? Interspecific relationships ? Other ?

If species A is present,

then species B is absent,
and species C must be present.
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Why focus on species distribution models using artificial neural networks?

Original use Derived use for species prediction models

wild boar
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Why focus on species distribution models using artificial neural networks?

Species distribution models using artificial neural networks for predict present

wild boar : present
species B : absent
species C: absent
species D : present
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Species distribution models using artificial neural networks for predict abundance

wild boar : 2.1 per km?
species B : 0.0 per km?
species C: 0.1 per km?
species D : 5.4 per km?

@,
O

artificial neural networks

Ll

/9



Fish occurrence and fish abundance datasets

406 fish abundance counts B = -~

& | \
(o
LaoN m—p Reef Life Survey

Abundance of 47 fish species
35°N for each count

62 000 fish presene-l BN =2 O

L ey,
_ e L 2SN
/‘.0).0’\‘0 /’<0

< GBIF

N/
e o) L 2 L > 7, : f s : = v 40°N v | .
S 0\\:’\ < ' o : 0 e Global Biodiversity
¢ B ¢ g0 ® o ¥ AT T Information Facility

@976 “\»
¢ ¢

: 2
R
NS

Occurrences of 181 fish species
in total

5°0 0° 5°E 10°E 15°E 20°E 25°E 30°E 35°E 4 /9



	Slide Number 1
	Why focus on species distribution models using artificial neural networks?
	Current limitations: abundance data sets too small for neural networks
	Overcoming limitations with transfer learning technology
	Overcoming limitations with transfer learning technology
	Overcoming limitations with transfer learning technology
	Fish occurrence and fish abundance datasets
	Environmental dataset and benchmark
	Evaluation Metric 
	Model performances on fish abundance prediction
	Model performances on fish abundance prediction
	Model performances on fish abundance prediction
	Model performances on fish abundance prediction
	Model performances on fish abundance prediction
	Conclusion and future work
	Conclusion and future work
	Why focus on species distribution models using artificial neural networks?
	Why focus on species distribution models using artificial neural networks?
	Fish occurrence and fish abundance datasets

