

BioSpace25 - Biodiversity insight from Space 10 - 14 February 2025 | ESA-ESRIN | Frascati - Italy

From Uncertainty to Action: Integrating *In Situ* and Remote Sensing Campaigns for Open Biodiversity Data Products

tinyurl.com/biospaceuncertainty Check out the workshop website

ESA UNCLASSIFIED - For ESA Official Use Only

Workshop Organisers

Anabelle Cardoso University at Buffalo, USA & University of Cape Town, South Africa

Kyla Dahlin Michigan State University, USA

Erin Hestir University of California Merced, USA

Mike Harfoot Vizzuality & Dalhousie University, Canada

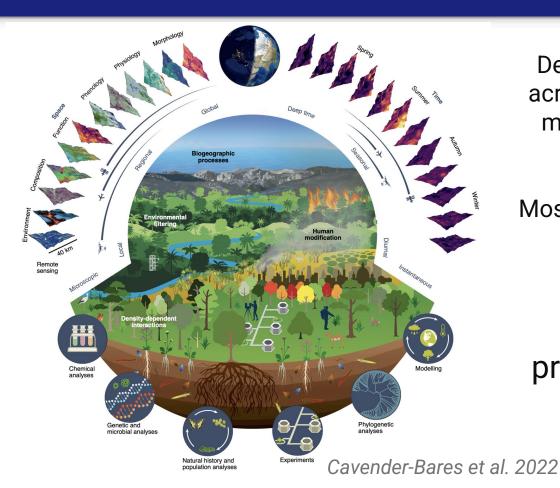
Carsten Meyer iDiv, Germany

Javier Pacheco - Labrador Spanish National Research Council, Spain

Christian Rossi University of Zurich, Switzerland

Maria Santos University of Zurich, Switzerland

Adam Wilson University at Buffalo, USA


Agenda

Session 1: 15:00 - 16:30				
15:00 - 15:30	Welcome and setting the scene presentations			
15:30 - 16:30	Breakout discussion			
Coffee Break: 16:30 - 17:00				
Session 2: 17:00 - 18:30				
17:00 - 18:15	Breakout group reporting back and plenary discussion			
18:15 - 18:30	Reflections and wrap up			

Integrating in situ (field data) with Earth Observations

Demand for biodiversity knowledge across society: Countries (GBF), land managers, sustainability reporting, nature-related finance

Most large-scale data products involve integration of *in situ* and Earth Observations

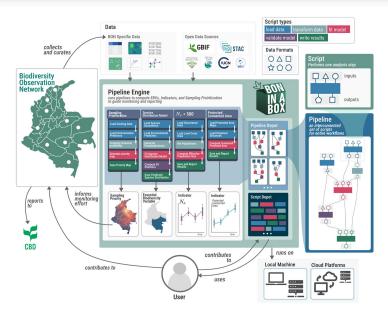
Seldom propagate or communicate uncertainties

Collecting and using in situ data for uncertainty reduction

• Individual Research Projects

• Valuable but fragmented and difficult to generalize.

• Long-Term Ecological Research (LTER):


- e.g. eLTER and ICOS in Europe, TERN in Australia, NEON in US, CERN in China and SAEON/EFTEON in South Africa
- GERI bring together LTER data for international analysis.

• Data Aggregators / Infrastructure

 e.g. GBIF (Global Biodiversity Information Facility), TRY (plant trait database), OBIS (marine biodiversity), eBird, and iNaturalist facilitate broader data sharing.

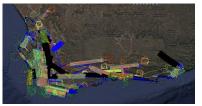
• Biodiversity Observation Networks (BONs)

- modular solutions for in situ biodiversity monitoring.
- Field Campaigns
 - Targeted field data collection

BON-in-a-Box Pipeline https://doi.org/10.32942/X2M320

Targeted, time-bound, and systematic data collection initiatives

 NASA Carbon Cycle & Ecosystems / Biological Diversity Program <u>cce.nasa.gov/biodiversity</u>


Expanding Temporal Coverage NASA SHIFT campaign Weekly imaging spectroscopy and repeated field observations to assess temporal reflectance variation with corresponding ecological variation

Expanding spatial & biological coverage NASA BioSCape campaign imaging spectroscopy with diverse biodiversity observations over South Africa bioscape.io

Outcome = recommendations for future investment:

- What applications of integrated *in situ*/RS biodiversity data products need better uncertainty quantification?
- What are the priorities to reduce uncertainty in integrated *in situ*/RS biodiversity data products?

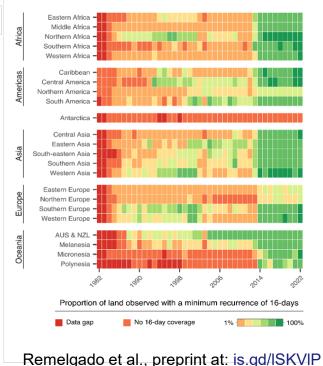
tinyurl.com/biospaceuncertainty

Spatial/temporal uncertainties

- gaps in data coverage
- pre-processing uncertainties
- imprecise or inaccurate locations, timings, trajectories
- mismatching resolutions or extents
- conceptual/process uncertainties regarding what are sensible scales

Thematic uncertainties

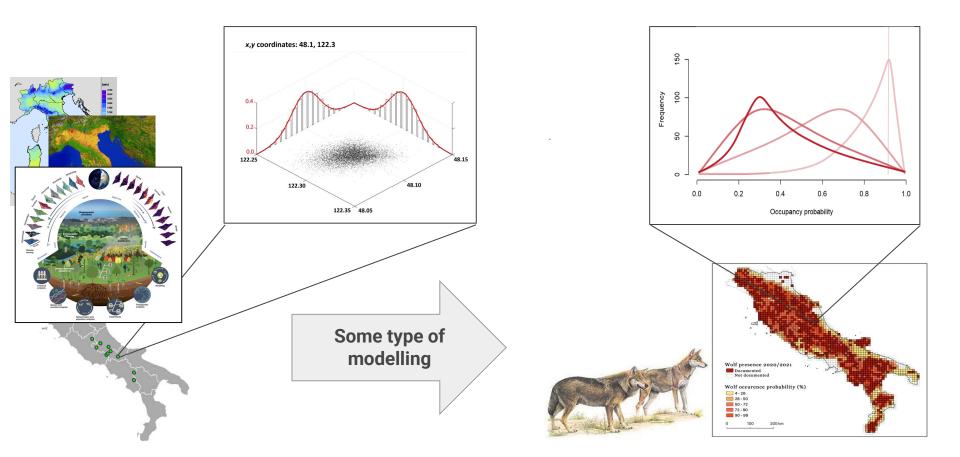
...


• ambiguous terms or definitions (e.g., taxon or ecosystem names) leading to uncertainty on which concepts were (or should be) adopted

Methodological Uncertainty

• Different preprocessing models, sensors, field sampling methods

Uncertainties are often distributed non-randomly (... bias!)


Gaps in Landsat data coverage

Uncertainties in gridded *products*

Role of space agencies, funding bodies, and researchers in addressing uncertainties

- Standards/Conformity
- Traceability
- Transparency
- Reporting
- Governance

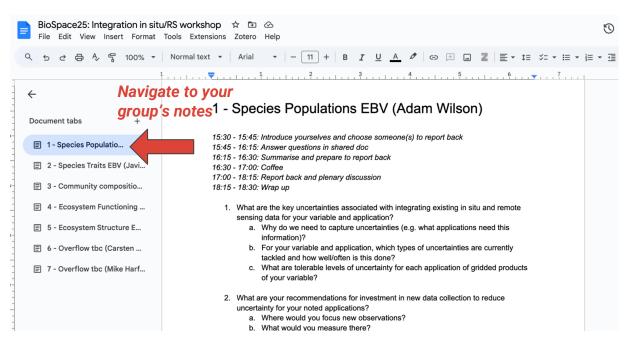
Image by OpenAI

Outcome = recommendations for future investment:

- What applications of integrated *in situ*/RS biodiversity data products need better uncertainty quantification?
 - What is already there and could be built on?
 - How can we make uncertainty more palatable for different end users?
- What are the priorities to reduce uncertainty in integrated *in situ*/RS biodiversity data products?
 - What are the spatial, temporal, and biodiversity facet-specific priorities?
 - How can we maximize the utility of data collected in field campaigns?

Essential Biodiversity Variables (EBVs)

- Where are we now: State of uncertainty for data products for this EBV?
- Where do we go: Priorities for improving uncertainty for this EBV?


Breakout Groups: two key questions

- What are the key uncertainties associated with integrating existing *in situ* and remote sensing data for your variable and application?
 - Why do we need to capture uncertainties (e.g. what applications need this information)?
 - For your variable and application, which types of uncertainties are currently tackled and how well/often is this done?
 - What are *tolerable levels of uncertainty* for each application of gridded products of your variable?
- What are your recommendations for investment in new data collection to reduce uncertainty for your noted applications?
 - *Where* would you focus new observations?
 - What would you measure there?
 - Would you prioritise *spatial* or *temporal* or *spectral* coverage, or something else?
 - Other priorities: e.g. is capacity building and/or integrating existing data and/or harmonisation more important here than new data, new sensors/technology?

Breakout Groups: Shared notes

tinyurl.com/biospaceuncertainty

- Each breakout group has a facilitator
 - Help them keep things moving don't get too stuck on questions
 - Help them take notes in the shared doc good notes are invaluable

15:30 - 15:45	Introduce yourselves and choose someone(s) to report back	
15:45 - 16:15	Answer questions in shared doc	
16:15 - 16:30	Summarise and prepare to report back	
16:30 - 17:00	Coffee	
17:00 - 18:15	Report back and plenary discussion	
18:15 - 18:30	Wrap up	

Respect & Professionalism

- Listen actively and respect diverse perspectives—allow others to speak without interruption.
- Communicate constructively—critique ideas, not people; harassment or discrimination will not be tolerated.

Inclusion & Collaboration

- Encourage participation and accommodate different communication styles.
- Be welcoming-value diversity and ensure all voices are heard.

Curiosity & Learning

- Ask questions and challenge assumptions—stay open to new ideas.
- Embrace feedback as a tool for growth and innovation.

Sta		
1 - Species Populations EBV (Adam Wilson)	2 - Species Traits EBV (Javier Pacheco-Labrador)	
3 - Community composition EBV (Christian Rossi)	4 - Ecosystem Functioning EBV (Erin Hestir)	
5 - Ecosystem Structure EBV (Kyla Dahlin)	6 - Overflow tbc (Carsten Meyer)	
7 - Overflow tbc (Mike Harfoot)		